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We ask which logics with a given center allow for enlargements with an arbitrary
state space. We show that these are precisely those logics the center of which
possesses a two-valued state and the state space of which is nonempty. This
extends the results of Binder as well as our previous results and supplements the
results of Foulis and PtaÂk and of Navara, PtaÂk, and Rogalewicz. We also comment
on some related questions.

1. INTRODUCTION AND BASIC NOTIONS

In the logicoalgebraic approach to the foundation of quantum mechanics

we usually identify the ª quantum logicº of an experiment with a s -orthocom-

plete orthomodular poset and the ª stateº of an experiment with a s -additive
probability measure (e.g., Gudder, 1979; PtaÂk and PulmannovaÂ, 1991; Vara-

darajan, 1968). The set of all ª absolutely compatibleº events of an experiment

is then identified with the center of the corresponding s -orthocomplete ortho-

modular poset. A natural question arises whether this identification allows

for independence of the state space and the center (it should be noted that,

for instance, in the von Neumann algebra formalism this is not the case; see
Kadison, 1965). We want to show in this paper that it is ª almostº so. Under a

very mild condition on the center we are able to guarantee a full independence.

Moreover, we also ensure an arbitrary degree of noncompatibility in our

constructions (i.e., in proving that there is a quantum logic with a given

center and an arbitrary state space, we ensure that such a logic may be as

ª nonclassicalº as needed).
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The constructions are rather technical in places. Routine details are

therefore sometimes omitted. Nevertheless, all essential ideas are at least

sketched. The reader interested exclusively in orthomodular lattices can sim-
ply replace the word ª logicº with ª orthomodula r latticeºÐ the results remain

valid without changes.

Let us recall some basic notions as we shall use them in the sequel. By

a quantum logic (or simply by a logic) we mean a partially ordered set L 5 (L,

# ) with a least element 0 and a greatest element 1 and with a complementation

operation 8 such that the following conditions are satisfied:

(i) a 5 a9, and if a # b, then b8 # a8 (a, b P L).

(ii) If ai P L (i P N ) and ai # a 8j for any i,j P N (i Þ j ), then

Ú i P N ai exists in L.
(iii) If a # b, then a Ú (b Ù a8) 5 b (a, b P L).

Let us reserve the symbol L for logics. Typical examples of logics are
Boolean s -algebras or lattices of projections in a von Neumann algebra. We

do not assume that quantum logics are necessarily lattices.

Let us define the notion of sublogic of a logic. Let K and L be logics.

Then K is said to be a sublogic of L if there is an injective mapping e: K ª
L such that:

(i) e (0) 5 0.

(ii) e (a8) 5 e (a)8 (a P K ).

(iii) e ( Ú i P N ai) 5 Ú i P N e (ai) (ai P K for any i P N ) provided ai #
a 8j (i Þ j ).

(iv) a % b (in K ) if and only if e (a) % e (b) (in L) [recall that the

symbol a % b means that a is compatible with b, i.e., a 5 (a Ù
b) Ú (a Ù b8) and b 5 (a Ù b) Ú (b Ù a8)].

If K is a sublogic of L, then K is a logic in its own right with the

operations inherited from L. Thus, in this case we can understand K as a

subset of L. If K is a Boolean s -algebra, we call it a Boolean sublogic of L.
The center of L, C(L), is defined to be the intersection of all maximal Boolean
sublogics of L. Of course, C (L) is again a Boolean sublogic of L. Moreover,

a P C (L) if and only if a % b for any b P L.
Let L be a logic. By a state on L we mean a probability measure on L.

Thus, a mapping s: L ª [0, 1] is a state on L if :

(i) s (1) 5 1.
(ii) s ( Ú i P N ai) 5 S i P N s (ai) whenever ai P L (i P N ) and ai # a 8j

(i Þ j ).

Let us denote by 6(L) [resp. 62(L)] the set of all states (resp. the set

of all two-valued states) on L. The set 6(L) naturally carries an affine and
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a topological structure inherited from the space [0, 1]L. The set 6(L) endowed

with this affine and topological structure is called the state space of L. It is

easily seen that 6(L) is convex [obviously, 6(L) is almost never compact].
There is a characterization of state spaces of logics among convex sets.

It was proved in Navara and RuÈ ttimann (1991) that the state spaces are
exactly s-semiexposed faces in compact convex subsets of locally convex

Hausdorff topological spaces (or, equivalently, in a product of real lines).

[Let us only recall the definition of an s-semiexposed face. Consider the

affine hull A (K ) of a compact convex set K and its second dual A (K )**. An
element f P A (K )** is said to be an s-functional if f is the weak* limit of

an isotone sequence of elements in [0, e] ù A (K ) (e is the unit function on

K ). A face F of K is said to be s-exposed if there exists an s-functional f
such that F 5 f 2 1(1) ù K, and F is said to be s-semiexposed if F is an

intersection of s-exposed faces of K.]
We are ready to state our result. It is convenient to employ the following

notion (naturally, the sign ª 5 º means the existence of an affine homeomor-

phism when applied for state spaces, the existence of a Boolean s -isomor-

phism when applied for Boolean s -algebras).

Definition. Let L be a logic and let B be a Boolean s -algebra. Then L
is called state-space-flexible with B fixed for the center if the following
condition is satisfied: If we are given an s-semiexposed face F, then there is

a logic K such that:

(i) L is a sublogic of K.
(ii) C (K ) 5 B.

(iii) 6(K ) 5 F.

Theorem. Let L be a logic and let B be a Boolean s -algebra. Then L is

state-space-flexible with B fixed for the center if and only if 6(L) Þ 0¤ and

62(B) Þ 0¤.

Proof. Let us first show that the condition is necessary. Obviously,
6(L) Þ 0¤, because if it is not the case, then L cannot be embedded into any

logic which possesses states. Let us show that 62(B) Þ 0¤. We have to verify

that if L is state-space-flexible with B fixed for the center, then there is a

two-valued state on B. Take a singleton for F. Thus, set F 5 {0}. Obviously,

F is an s-semiexposed face in the interval [0, 1]. Suppose that K is such a

logic that allows for an embedding e: L ª K and, moreover, suppose that
C (K ) 5 B and 6(K ) 5 F. If c P C (K ), then evidently K 5 [0, c]K 3 [0,

c8]K. (Here the symbols [0, c]K , [0, c8]K denote the corresponding intervals

in K.) Consider now the state spaces 6([0, c]K) and 6([0, c8]K). If 6([0, c]K) Þ
0¤and also 6([0, c8]K) Þ 0¤, then we can easily construct two different states
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on K. This is absurd. Thus, one of these state spaces must be empty. Let us

say that 6([0, c]K) 5 0¤. Then 6([0, c8]K) is a singleton. This means that for

the restriction s of the state s, s P 6(K ), to C (K ), we have s(c) 5 0 and s
(c8) 5 1. This can be applied to every element of C (K ), obtaining a two-

valued state on C (K ). Since C (K ) 5 B, we have 62(B) Þ 0¤, which we

wanted to show.

Let us show that the condition is sufficient. The proof follows to certain

extent the technique of Binder (1986) and Navara and PtaÂk (1988); we

therefore omit technical details. Let us divide the proof into a few parts.

A. Suppose that F is a singleton and B 5 {0, 1}. Then we claim that
L can be embedded into a logic K such that C (K ) 5 {0, 1} and 6(K ) 5 F. In

order to obtain the proof of A, let us make the following series of constructions.

(a) Fix a state on L, some s P 6(L). Choose an }-base M in L. [Let

us recall that an }-base is such a collection M, M , L, that the following

conditions are satisfied: (i) a P M, a # b Þ b P M, (ii) a ¸ M Þ a8 P
M. An }-base exists in every logic and each }-base contains no orthogonal
pair (KatrnosÏ ka, 1982; Marlow, 1978). We will now enlarge the logic L in

such a way that all states on the larger logic will be uniquely determined by

their values attained on elements of L. Since the values of a state on L are

already determined by the values on M, we will obtain an enlargement with

a singleton state space.

(b) Suppose that r P [0, 1]. Then there is a logic Lr such that 6(Lr) is
a singleton and, moreover, there is an atom ar P Lr such that the only state

sr P 6(Lr) satisfies the condition sr(ar) 5 r. This construction is demonstrated,

e.g., in PtaÂk (1987).

(c) Suppose that a P M 8, where M is the chosen }-base and M 8 5 {x |
x 5 y8 for some y P M }. We will now use the following construction
maneuver which will indicate the way to enlarge the logic L and also will

make the value of any state of the enlargement equal to s (a) [recall that s
P 6(L) is the fixed state]. Put r 5 s (a) and construct the logic Lr (containing

an atom ar) with the properties listed in part (b). We will utilize the construc-

tion called in Navara and Rogalewicz (1991) a replacement of an atom ar in

Lr with a logic Ia 5 [0, a]L. This construction proves the following proposition.
There is a logic L a with the following properties:

(i) There is an isomorphism ha of Lr and a sublogic of L a.

(ii) There is an isomorphism ia of Ia and [0, ha(ar)]L
a.

(iii) The logic L a is generated by ha(Lr) ø ia (Ia).

The construction of such a logic is presented in detail in Navara and Rogalew-

icz (1991). [All elements of the set-theoretic difference L a 2 ha(Lr) can be

expressed as orthogonal suprema ha(b) Ú ia(c), where b P [0, a8r]Lr, c P Ia.]
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Finally, we identify the corresponding elements of the isomorphic sublogics

[0, a]L ø [a8, 1]L and [0, h (ar)]La ø [h (ar)8, 1]La. Each state on La is uniquely

determined by its values on [0, h (ar)]La ( 5 [0, a]L) and attains the value r
on ar ( 5 a).

(d) Suppose that we have constructed the logic L a for any a P M 8.
Thus, we now have a family

3 5 {L} ø {La | a P M 8}

We will perform the pasting of the whole family 3, reaching the logic K we
need. This can be done [as verified in Navara and Rogalewicz (1991) and

Navara and PtaÂk (1988)]. Let us only indicate the basic ideas of the construc-

tion. Observe first that the following assertions hold true for all R, S P 3,

R Þ S:

(i) If R, S P 3, then R ù S is a sublogic of both R and S, so
that the orderings (resp. the orthocomplementations) of R and S
coincide on R ù S.

(ii) If x P R ù S, then either [0, x]R 5 [0, x]S , R ù S or [x, 1]R 5
[x, 1]S , R ù S (this follows from the fact that M is an }-base).

(iii) R ù S is closed under the formation of countable orthogonal

suprema.
(iv) R ù S , L.

Put K 5 ø 3 and define the partial ordering and orthocomplementation so

that a # b in K (resp., a 5 b8 in K ) if and only if a # b (resp., a 5 b8) in

some R P 3. It is not difficult to verify that K endowed with this partial

ordering and orthocomplementation is a logic. Obviously, 6(K ) is a singleton
[6(K ) contains exactly the (unique) extension of s over K!]. This completes

the proof of Proposition A.

B. Thus, for the given logic L we have constructed a logic K such that

L is a sublogic of K and the state space 6(K ) is a singleton. Suppose now

that we are given an arbitrary s-semiexposed face F. By Navara and RuÈ ttimann
(1991), there is a non-Boolean logic T such that 6(T ) 5 F. Take the horizontal

sum of T and K. Denote this logic by V. Then, again, 6(V ) 5 F and C (V ) 5
{0, 1}. Moreover, L is a sublogic of V. We will now show that there is a

logic Q such that 6(Q) 5 F, C(Q) 5 B, and such that V is a sublogic of Q.
This will complete the proof.

Take first a finite stateless logic Z (Greechie, 1971). Thus, 6(Z ) 5 0¤
and Z is finite. Let us denote by Y the horizontal sum of V and Z. Then 6(Y ) 5
0¤and V is a sublogic of Y.

Consider now the Boolean s -algebra B. By the Loomis±Sikorski theorem

(Sikorski, 1969) there is Boolean s -algebra S of subsets of a set S so that
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B is a s -epimorphic image of S . In other words, there is a Boolean s -

epimorphism h: S ª B. By our assumption, there is a two-valued state on

B. Let us denote it by t. Then the composition mapping h + t: S ª {0, 1} is
a two-valued state on S . Obviously, the set ^ 5 {A P S | t (h (A)) 5 1}

forms an ultrafilter on S which has the countable intersection property. We

will use this ultrafilter in the construction that follows.

Fix a state u on V. Let us consider the set of functions f : S ª Y which

have the following properties:

(i) There is an Ff P ^ such that f | Ff is a constant function attaining

a value in V.
(ii) For all z P Y 2 V 5 Z 2 {0, 1}, the set Uz 5 f 2 1(z) belongs to

S 2 ^.

(iii) The composition function f + u: (S 2 ø z P Z Uz) ª [0, 1] is measur-

able with respect to Borel subsets of [0, 1] and the s -algebra S Ä ,
where S Ä is the trace of S on the set S 2 ø z P Z Uz.

It is not difficult to check that the set of all functions f : S ª Y with the

above properties (i)±(iii) is a logic (the most technical part is the verification

of s -orthocompleteness, which follows from the fact that measurable func-

tions are closed under the formation of countable sums). Let us denote this
logic by W. Since f P C (W ) if and only if f (S) , {0, 1}, we see that C (W )

5 S . Moreover, 6(W ) 5 6(V ), since Z is stateless and therefore, for any

state w P 6(W ), w ( f ) depends only on the value of f on a set Ff from the

ultrafilter ^. Since on Ff the function f attains a constant value and this value

belongs to V, we have 6(W ) 5 6(V ).

Let us finally factorize the logic W with respect to the s -ideal of all
functions from W which attain nonzero values only on the sets which belong

to the kernel h 2 1 (0) of the Loomis±Sikorski s -epimorphism h: S ª B. We

obtain a logic Q such that C (Q) 5 B. Moreover, 6(Q) 5 6(V ), since no set

belonging to the ultrafilter ^ can be in the kernel of h. The proof is complete.

By a slight modification of our construction, we can prove the following
result of separate, purely algebraic interest.

Proposition. Let L be a logic and let B be a Boolean s -algebra. Let

6(L) Þ 0¤. Then L can be embedded in a logic K such that C (K ) 5 B.
(The result remains valid if we write ª s -orthocomplete orthomodular latticeº

instead of ª logic.º )

We conjecture that the above result is valid for all logics L and all

Boolean s -algebras, i.e., we conjecture that the assumption 6(L) Þ 0¤ is not

necessary [observe that in the finite additive setup of the problem it is soÐ the

bounded Boolean power does the job; see, e.g., Bruns et al. (1990) and PtaÂk
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(1987)]. Let us formulate the lattice version (resp. the complete lattice version)

of this conjecture as an open question.

Open Question. Suppose that L is a s -orthocomplete orthomodular lattice
and suppose that B is a Boolean s -algebra. Is there a s -orthocomplete ortho-

modular lattice K such that L is a sub- s -orthocomplete orthomodula r lattice

of K and C (K ) 5 B? Is there a positive answer to this question if we replace

ª s -orthocompleteº with ª orthocompleteº ?
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